首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14771篇
  免费   2621篇
  国内免费   1878篇
化学   10983篇
晶体学   220篇
力学   824篇
综合类   130篇
数学   1602篇
物理学   5511篇
  2024年   19篇
  2023年   309篇
  2022年   350篇
  2021年   472篇
  2020年   579篇
  2019年   637篇
  2018年   502篇
  2017年   491篇
  2016年   693篇
  2015年   699篇
  2014年   887篇
  2013年   1204篇
  2012年   1401篇
  2011年   1546篇
  2010年   1033篇
  2009年   1008篇
  2008年   1013篇
  2007年   991篇
  2006年   796篇
  2005年   683篇
  2004年   580篇
  2003年   443篇
  2002年   415篇
  2001年   341篇
  2000年   315篇
  1999年   238篇
  1998年   205篇
  1997年   165篇
  1996年   181篇
  1995年   147篇
  1994年   154篇
  1993年   115篇
  1992年   114篇
  1991年   91篇
  1990年   84篇
  1989年   77篇
  1988年   43篇
  1987年   41篇
  1986年   42篇
  1985年   40篇
  1984年   29篇
  1983年   16篇
  1982年   6篇
  1981年   10篇
  1980年   5篇
  1979年   11篇
  1977年   6篇
  1976年   8篇
  1975年   6篇
  1957年   5篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
101.
102.
Spin–orbit charge-transfer intersystem crossing (SOCT-ISC) is useful for the preparation of heavy atom-free triplet photosensitisers (PSs). Herein, a series of perylene-Bodipy compact electron donor/acceptor dyads showing efficient SOCT-ISC is prepared. The photophysical properties of the dyads were studied with steady-state and time-resolved spectroscopies. Efficient triplet state formation (quantum yield ΦT=60 %) was observed, with a triplet state lifetime (τT=436 μs) much longer than that accessed with the conventional heavy atom effect (τT=62 μs). The SOCT-ISC mechanism was unambiguously confirmed by direct excitation of the charge transfer (CT) absorption band by using nanosecond transient absorption spectroscopy and time-resolved electron paramagnetic resonance (TREPR) spectroscopy. The factors affecting the SOCT-ISC efficiency include the geometry, the potential energy surface of the torsion, the spin density for the atoms of the linker, solvent polarity, and the energy matching of the 1CT/3LE states. Remarkably, these heavy atom-free triplet PSs were demonstrated as a new type of efficient photodynamic therapy (PDT) reagents (phototoxicity, EC50=75 nm ), with a negligible dark toxicity (EC50=78.1 μm ) compared with the conventional heavy atom PSs (dark toxicity, EC50=6.0 μm, light toxicity, EC50=4.0 nm ). This study provides in-depth understanding of the SOCT-ISC, unveils the design principles of triplet PSs based on SOCT-ISC, and underlines their application as a new generation of potent PDT reagents.  相似文献   
103.
The evident contradiction between high local-concentration-based substrate reactivity and free-diffusion-based high reaction efficiency remains one of the important challenges in chemistry. Herein, we propose an efficient aggregation-induced synergism through the hydrophobic-driven self-assembly of amphiphilic oligonucleotides to generate high local concentration whereas retaining high reaction efficiency through hydrophobic-based aggregation, which is important for constructing efficient DNA nanomachines for ultrasensitive applications. MicroRNA-155, used as a model, triggered strand displacement amplification of the DNA monomers on the periphery of the 3D DNA nanomachine and generated an amplified fluorescent response for its sensitive assay. The local concentration of substrates was increased by a factor of at least 9.0×105 through hydrophobic-interaction-based self-assembly in comparison with the traditional homogeneous reaction system, achieving high local-concentration-based reactivity and free-diffusion-based enhanced reaction efficiency. As expected, the aggregation-induced synergism by hydrophobic-driven self-assembly of amphiphilic oligonucleotides created excellent properties to generate a 3D DNA nanomachine with potential as an assay for microRNA-155 in cells. Most importantly, this approach can be easily expanded for the bioassay of various biomarkers, such as nucleotides, proteins, and cells, offering a new avenue for simple and efficient applications in bioanalysis and clinical diagnosis.  相似文献   
104.
First-in-class CuII and AuIII metaled phosphorus dendrons were synthesized and showed significant antiproliferative activity against several aggressive breast cancer cell lines. The data suggest that the cytotoxicity increases with reducing length of the alkyl chains, whereas the replacement of CuII with AuIII considerably increases the antiproliferative activity of metaled phosphorus dendrons. Very interestingly, we found that the cell death pathway is related to the nature of the metal complexed by the plain dendrons. CuII metaled dendrons showed a potent caspase-independent cell death pathway, whereas AuIII metaled dendrons displayed a caspase-dependent apoptotic pathway. The complexation of plain dendrons with AuIII increased the cellular lethality versus dendrons with CuII and promoted the translocation of Bax into the mitochondria and the release of Cytochrome C (Cyto C).  相似文献   
105.
Lithium-sulfur batteries have been considered as potential electrochemical energy-storage devices owing to their satisfactory theoretical energy density. Nonetheless, the inferior conversion efficiency of polysulfides in essence leads to fast capacity decay during the discharge/charge cycle. In this work, it is successfully demonstrated that the conversion efficiency of lithium polysulfides is remarkably enhanced by employing a well-distributed atomic-scale Fe-based catalyst immobilized on nitrogen-doped graphene (Fe@NG) as a coating of separator in lithium-sulfur batteries. The quantitative electrocatalytic efficiency of the conversion of lithium polysulfides is determined through cyclic voltammetry. It is also proven that the Fe-NX configuration with highly catalytic activity is quite beneficial for the conversion of lithium polysulfides. In addition, the adsorption and permeation experiments distinctly indicate that the strong anchoring effect, originated from the charge redistribution of N doping into the graphene matrix, inhibits the movement of lithium polysulfides. Thanks to these advantages, if the as-prepared Fe@NG catalyst is combined with polypropylene and applied as a separator (Fe@NG/PP) in Li-S batteries, a high initial capacity (1616 mA h g−1 at 0.1 C), excellent capacity retention (93 % at 0.2 C, 70 % at 2 C), and superb rate performance (820 mA h g−1 at 2 C) are achieved.  相似文献   
106.
In this work, a mild and transition-metal-free approach for the nucleophilic aromatic substitution (SNAr) of unactivated fluoroarenes with primary aliphatic amines to form aromatic amines is reported. This reaction is facilitated by the formation of cationic fluoroarene radical intermediates in the presence of an acridinium-based organic photocatalyst under blue-light irradiation. Various electron-rich and electron-neutral fluoroarenes are competent electrophiles for this transformation. A wide range of primary aliphatic amines, including amino acid esters, dipeptides, and linear and branched amines are suitable nucleophiles. The synthetic utility of this protocol is demonstrated by the late-stage functionalization of several complex drug molecules.  相似文献   
107.
A simple Ni(cod)2 and carbene mediated strategy facilitates the efficient catalytic cross-coupling of methoxyarenes with a variety of organoboron reagents. Directing groups facilitate the activation of inert C−O bonds in under-utilized aryl methyl ethers enabling their adaptation for C−C cross-coupling reactions as less toxic surrogates to the ubiquitous haloarenes. The method reported enables C−C cross-coupling with readily available and economical arylboronic acid reagents, which is unprecedented, and compares well with other organoboron reagents with similarly high reactivity. Extension to directing group assisted chemo-selective C−O bond cleavage, and further application towards the synthesis of novel bifunctionalized biaryls is reported. Key to the success of this protocol is the use of directing groups proximal to the reaction center to facilitate the activation of the inert C−OMe bond.  相似文献   
108.
The random copolymerization of norbornene-functionalized macromonomers was explored as a method of synthesizing mixed-graft block copolymers (mGBCPs). The copolymerization kinetics of a model system of polystyrene (PS) and poly(lactic acid) (PLA) macromonomers was first analyzed, revealing a gradient composition of side chains along the mGBCP backbone. The phase separation behavior of mGBCPs with PS and PLA side chains of various backbone lengths and side chain molar ratios was investigated, and increasing the backbone length was found to stabilize the phase-separated nanostructures. The graft architecture was also demonstrated to improve the processability of the mGBCP, compared to a linear counterpart. Investigations of mGBCPs comprised of polydimethylsiloxane and poly(ethylene oxide) side chains exemplified the diverse self-assembled morphologies, including a Frank-Kasper A15 phase, that can be obtained with mGBCPs synthesized by random copolymerization of macromonomers. Lastly, a ternary mGBCP was synthesized by the copolymerization of three macromonomers.  相似文献   
109.
110.
通过对角化364×364完全能量矩阵的理论方法,对掺杂在Bi4Ge3O12晶体中的Er3+的Stark能级和EPR参数进行了研究,同时,定量分析了高阶晶体场混合效应和J-J混合效应对EPR g因子的影响。研究结果表明:对Er3+来说,最主要的J-J混合效应来源于多重态谱项2K15/2,其对EPR g因子的贡献约占2.5%,而最主要的高阶晶体场混合效应来源于第一激发多重态4I13/2和基态多重态4I15/2之间的晶体场混合,其对各向异性g因子中g的贡献大致是g//的两倍(即g约占 0.21%,g//约占0.092%),其他更高阶的晶体场混合和J-J混合效应可以忽略不计。因此,对于Er3+掺杂的络合物系统来说,只考虑基态多重态4I15/2对EPR g因子的贡献应该是一个很好的近似。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号